|
个人信息Personal Information
教师拼音名称:zhanghongbo
电子邮箱:
性别:男
其他联系方式Other Contact Information
邮箱 :
个人简介Personal Profile
工学博士,统计学博士后,硕士研究生导师,长期从事工业人工智能前沿研究,专注于机器视觉与工业大数据分析的理论创新及产业应用。发表SCI论文10篇(中科院分区1区3篇,TOP 4篇),主持或主要参与科研项目7项。
主讲本科生课程《人工智能技术及其应用》、《智能工厂规划设计》、《计算机控制系统综合实验》,研究生课程《信息检索与论文写作指导》。
发表论文:
1.Twin Q-learning-driven forest ecosystem optimization for feature selection[J]. Knowledge-Based Systems, 2025, 315: 113323.(1区,TOP)
2. Reinforcement learning guided auto-select optimization algorithm for feature selection[J]. Expert Systems with Applications, 2025, 268: 126320.(1区,TOP)
3. Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation[J]. Applied soft computing, 2020, 90: 106157.(1区,TOP)
4. Improved salp swarm algorithm based on Newton interpolation and cosine opposition-based learning for feature selection[J]. Mathematics and Computers in Simulation, 2024, 219: 544-558.(2区,TOP)
5. Probe mechanism based particle swarm optimization for feature selection[J]. Cluster Computing, 2024, 27(6): 8393-8411.
6. Grasshopper optimization algorithm with principal component analysis for global optimization[J]. The Journal of Supercomputing, 2020, 76(7): 5609-5635.
7. An improved bat algorithm and its application in multi-level image segmentation[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(1): 1399-1413.
8. A multi-level image thresholding approach using Otsu based on the improved invasive weed optimization algorithm[J]. Signal, Image and Video Processing, 2020, 14(3): 575-582.
9. Improved Hybrid Bat Algorithm with Invasive Weed and Its Application in Image Segmentation[J]. Arabian Journal for Science and Engineering, 2019, 44(11): 9221-9234.
10. A novel industrial image contrast enhancement technique based on an improved ant lion optimizer[J]. Arabian Journal for Science and Engineering, 2021, 46: 3235-3246.
主持或参与科研项目:
1.基于深度学习与协同粒子群算法的小样本表面缺陷识别方法研究,吉林省科技厅
2. 乱序堆叠零件机器人视觉拾取技术的研究与开发,吉林省发改委
3. 轿车冲压工业机器人视觉检测系统的研究,吉林省科技厅
4. 基于深度学习的滚动轴承故障诊断技术研究,吉林省教育厅
5. 基于数字图像相关的杜仲胶负重轮滚动力学特性研究,校企联合课题
6. 电动车发罩总成设计与开发,校企联合课题
7. 基于数字图像相关的汽车轮胎胎侧高速滚动力学特性研究,吉林省教育厅

