所属单位:化学与生命科学学院
教研室:化学教研室
发表刊物:Journal of Luminescence
项目来源:国家自然科学基金项目
摘要:We report a quantum-chemical study on the electronic structures and optical properties of two series of
heteroleptic iridium(III) complexes [(dfb-pz)2Ir(N∧
N+sub)], [dfb-pz¼2,4-difluorobenzyl-N-pyrazole, sub
indicates substituent group, N∧
N+sub¼tphppz¼4-tert-butyl-2-(5-phenyl-[1,2,4]triazol-3-yl)-pyridine
(1a), tmppz¼4-tert-butyl-2-(5-methyl-[1,2,4]triazol-3-yl)-pyridine (1b), fphppz¼4-fluoro-phenyl-5-(2-
pyridyl)pyrazole (1c), and fmphppz¼4-trifluoromehtyl-phenyl-5-(2-pyridyl)pyrazole (1d)]; with [(C∧
N
+sub)2Ir(fppz)], [C∧
N¼b-pz¼benzyl-N-pyrazole, fppz¼3-trifluoromethyl-5-(2-pyridyl)pyrazole, C∧
N
+sub¼dfb-pz¼2,4-difluorobenzyl-N-pyrazole (2a), tfmfb-pz¼2-trifluoromethyl-5-fluorobenzyl-N-pyr-
azole (2b), phb-pz¼3-phenyl-benzyl-N-pyrazole (2c), and dfphb-pz¼3-phenyl-2,4-difluorobenzyl-N-
pyrazole (2d)]. The calculated results shed light on the reasons of the remarkably manipulated excited-
state and electroluminescent properties through substitution effect. The phenyl ring on main ligands can
enhance the π-conjugation of the main ligands moiety and increase the metal-ligand bond strength for
2c and 2d, then enhancing the transition strength. From 1c, 1d, 2c, and 2d, it can also be seen that
substituents on the terminal phenyl ring have a slight effect on the excited energy because the distance
between the substituents and the ancillary (or main) ligand is interrupted by the phenyl moiety. The
calculated absorption and luminescence properties of the four complexes 1a, 1b, 2a, and 2b are
compared with the available experimental data and a good agreement is obtained. Furthermore, the
assumed complex 1c, 2c, and 2d possess better charge transfer abilities and more balanced charge
transfer rates. The designed complexes 2c and 2d are potential candidates for blue phosphorescent
materials.
合写作者:刘雨琦,曲晓春,武志坚
第一作者:尚小红
论文类型:期刊论文
卷号:143
页面范围:1
是否译文:否
发表时间:2013-11-01