论文成果
【SCI3区通讯作者周帆】Event-triggered-based decentralized optimal control of modular robot manipulators using RNN identifier
点击次数:
所属单位:电气与电子工程学院
教研室:自动化
发表刊物:Journal of Intelligent & Robotic Systems
项目来源:国家自然科学基金项目
关键字:Modular robot manipulators; Joint torque feedback technique; Neuro-dynamic programming; Event-triggered mechanism; Decentralized tracking control
摘要:In this paper, an event-triggered-based decentralized tracking control method is proposed for modular robot manipulators (MRMs) using a recurrent neural network (RNN) and neuro-dynamic programming (NDP). The joint torque feedback (JTF) technique is introduced to model the MRM subsystems. The cost function of each subsystem consists of a tracking error fusion function and a term summarizing the RNN identifier errors. The event-triggered Hamiltonian-Jacobi-Bellman (ETHJB) equation is solved by constructing a critic neural network using NDP, and a decentralized optimal tracking control policy under the event-triggered framework can be obtained. The closed-loop MRM system is shown to be uniformly ultimately bounded under the Lyapunov stability theorem. Finally, the experimental results verify that the proposed control method is superior to the time-triggered optimal control policy and the observer-critic based event-triggered optimal control policy proposed in the previous work of the author.
合写作者:潘强,马冰,安天骄,周帆,周帆
第一作者:李元春
论文类型:期刊论文
卷号:106
期号:3
页面范围:1
ISSN号:0921-0296
是否译文:
发表时间:2022-10-20

李元春

教师拼音名称:liyuanchun

出生日期:1962-04-08

电子邮箱:

性别:男

所属院系:电气与电子工程学院

版权所有:长春工业大学   吉ICP备05002091号   地址:吉林省长春市延安大街2055号    邮编:130012    
技术支持:信息化建设工作办公室(信息化技术中心)
访问量: 手机版 English 长春工业大学

最后更新时间: ..