已经得到个称赞     给我点赞
  • 副教授
  • 博士生导师
  • 硕士生导师
  • 教师拼音名称:Li Chunjing
  • 电子邮箱:
  • 入职时间:2003-06-30
  • 所在单位:长春工业大学
  • 职务:副院长
  • 学历:研究生(博士)毕业
  • 办公地点:吉林省长春市朝阳区延安大街2055号长春工业大学南湖校区
  • 性别:
  • 联系方式:lichunjing@ccut.edu.cn
  • 学位:博士学位
  • 在职信息:在职
  • 主要任职:数学与统计学院副院长
  • 其他任职:吉林省工业与应用数学学会副秘书长
  • 毕业院校:吉林大学
  • 学科:统计学其他专业
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果
【外博SCI】Bayesian empirical likelihood and variable selection for censored linear model with applications to acute myelogenous leukemia data
  • 所属单位:数学与统计学院
  • 教研室:统计教研室
  • 发表刊物:International Journal of Biomathematics
  • 项目来源:省、市、自治区科技项目
  • 关键字:Bayesian empirical likelihood; censored linear regression; coverage probabilities;
  • 摘要:This paper develops the Bayesian empirical likelihood (BEL) method and the BEL variable selection for linear regression models with censored data. Empirical likelihood is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. By introducing two special priors to the empirical likelihood function, we find two obvious superiorities of the BEL methods, that is (i) more precise coverage probabilities of the BEL credible region and (ii) higher accuracy and correct identification rate of the BEL model selection using an hierarchical Bayesian model, vs. some current methods such as the LASSO, ALASSO and SCAD. The numerical simulations and empirical analysis of two data examples show strong competitiveness of the proposed method.
  • 合写作者:赵洪梅,董小刚
  • 第一作者:李纯净
  • 论文类型:期刊论文
  • 卷号:12
  • 期号:5
  • 页面范围:1
  • ISSN号:5000
  • 是否译文:
  • 发表时间:2019-05-29