范依航

个人信息Personal Information

教授

博士生导师

硕士生导师

教师拼音名称:fanyihang

电子邮箱:

所在单位:机电工程学院

学历:研究生(博士)毕业

学位:博士学位

在职信息:在职

毕业院校:哈尔滨理工大学

学科:机械制造及其自动化

其他联系方式Other Contact Information

移动电话 :

邮箱 :

个人简介Personal Profile

范依航,工学博士,教授,博士生导师。

现长春工业大学机电工程学院教师,长春工业大学优秀青年学者。担任切削与先进技术研究会(东北区)理事,吉林省增材制造学会会员;国家自然科学基金评审专家;Materials客座编辑,JMPJAMT, JAC, JMS, 航空制造技术等10余个国内外知名期刊审稿专家。 作为项目负责人,主持国家自然科学基金、省科技计划项目、省教育厅项目多项。作为主要参与人员,参与国家863重点研发项目、国家科技重大专项、国家自然科学基金等多项课题。在JMSTJMPInt. JAMT, JACInt. JMSACME、中国机械工程等期刊发表论文50余篇,其中 SCI/EI检索40余篇;参与项目获吉林省自然科学二等奖1项,吉林省自然科学学术成果二等奖1项,黑龙江省科技进步二等奖2项。  

2018~2023,多次获得优秀硕士毕业论文指导教师,指导的研究生多人获得优秀硕士毕业生荣誉称号。

主讲互换性与技术测量、机械制造基础、机电英语、难加工材料高效加工技术、信息检索与论文写作指导等课程。

一、课题组研究方向及简介

   l  研究方向:

难加工材料高效、精密、洁净切削理论与技术

高效刀具开发、特种加工

研究工作能紧密联系生产实际,探索符合吉林省航空装备制造、维修特色产业体系的研究目标和方向,发挥团队优势,注重学科的融合与攻关解决 实际问题,并把基础研究和推广应用紧密结合,科研成绩显著。在难加工材料切削机理、刀具磨损机制与控制、绿色切削技术和工艺优化理论和方法等方面,取得了阶段性研究成果,关键技术有所突破。其中,针对高温合金、钛合金、复合材料切削过程中的技术难点,立足于切削过程中材料去除机制和加工表面创成机理的溯源研究,探索切削工艺的新方法、新装备,在该领域取得了一系列有价值的研究成果,相关研究成果已在通用技术集团昆明机床股份有限公司、哈尔滨汽轮机厂有限责任公司、中航工业集团相关公司等成功应用。相关研究成果获得国内外同行专家的引用和积极评价。

l  团队成员:郝兆朋教授、范依航教授、孔令昊博士

课题组目前共32人,包括在读博士6人,在读硕士23人。已毕业博士1人、已毕业硕士40人。

l  招生信息:

课题组每年招收2-3名博士,10-12名硕士(机械工程、智能制造及相近专业的学硕与专硕)


二、科研项目

[1] 国家自然科学基金(面上):镍基高温合金振动辅助切削接触状态下加工表面形、性演变机理,2024,项目负责人

[2]国家自然科学基金(青年):切削镍基高温合金的刀-屑界面形膜机制及刀具抗磨损机理研究, 2016,项目负责人

[3] 省科技计划项目:镍基高温合金切削接触状态下加工表面研究,2023,项目负责人

[4]  省科技计划项目:切削镍基高温合金的摩擦润滑效应及刀具抗磨损机理研究,2017,项目负责人

[5]省教育厅项目:切削高温合金摩擦材料响应及刀具抗磨机理研究,2021,项目负责人

    [6] 省教育厅项目硬质合金刀具高速切削钛合金摩擦磨损机理研究,2017,项目负责人

[7] 教育部春晖计划:基于摩擦润滑效应的高速切削Inconel 718刀具抗磨损机理研究,2015,项目负责人

[8] 国家自然科学基金(青年):基于镍基高温合金 微观结构变形特征的薄壁件低应力切削机理,2015,参与

[9] 国家自然科学基金(面上):脉冲电流协同超声振动辅助切削镍基高温合金切削机理与工艺基础研究, 2023 参与

[10] 省重点科技攻关:镍基高温合金高效 、高质量车削加工 装置及关键技术研究,2015,参与

    [11] 省重点科技攻关:高速切削镍基合金加工表面形成机理与工艺技术,2021,参与

[12] 省自然科学基金:切削镍基高温合金GH4169 微观结构变形机理与精密加工技术,2016,参与

[13]省自然科学基金:高速切削镍基高温合金接触界面状态演化与刀具磨损机理,2020,参与

[14] 市重点研发计划:基于高温合金切削机理的高效、高质切削工艺开发与应用,2021,参与

    [15]省教育厅重点项目:镍基高温合金切削变形机理的研究,2015,参与

[16] 国家科技重大专项:航空发动机典型件与汽车淬硬钢模具高速切削工艺研究,2009,参与

三、科研获奖

[1] 高性能金属难加工材料切削机理与工艺应用研究,吉林省自然科学奖,二等奖,吉林省人民政府,2021.

[2] 切削镍基高温合金水蒸汽+空气冷却润滑效应及刀具磨损机理,吉林省自然科学学术成果奖,二等奖,吉林省科技协会,2018.

[3] 高品质大螺距螺纹高效切削技术,黑龙江省科技进步奖,二等奖,2019.

[4] 航空发动机典型件与汽车淬硬钢模具高速切削工艺研究,黑龙江省科技进步奖,二等奖,2014.

四、部分代表性论文

      [1]     第一作者. 基于第一性原理的TiAlN 涂层刀具切削GH4169的扩散机理研究. 机械工程学报,2024.01,网络首发. EI中国科技期刊卓越行动梯队期刊

      [2]     第一作者. Investigation on cutting mechanisms of machining SiCp/Al based on strain gradient theoryJournal of Manufacturing Processes2024.04,已录用(SCI1区)

      [3]     第一作者. A GND simulation model for micro‑deformation mechanism analyses in high‑speed cutting Inconel718. The International Journal of Advanced Manufacturing Technology (2023) 128:2931–2952. SCI3区)

      [4]     通讯作者. Work hardening of Ni‑based single crystal alloy in vibration grinding based on molecular dynamics method. Archives of Civil and Mechanical Engineering (2024) 24:39. SCI2区)

[5]     第一作者. 切削镍基高温合金NiFeCr原子在WC-Co硬质合金刀具中扩散磨损机理及对材料性能的影响研究. 材料导报,2024EI

[6]     通讯作者. Influence of cutting parameters on cutting specific energy of Inconel718 based on strain gradient. Proc IMechE Part B: J Engineering Manufacture 2024, Vol. 238(1-2) 72–84. (SCI3)

[7]     通讯作者. Deformation mechanisms in the cutting process of SiCp/Al composites using the molecular dynamics (MD) approach. Proc IMechE Part B: J Engineering Manufacture. 2023, 09. on line, SCI4区)

[8]     通讯作者. Research on the dynamic plasticity mechanism of additive manufactured nickel-chromium–molybdenum corrosion-resistant alloy steel under impact load. Engineering Failure Analysis 152 (2023) 107503. SCI2区)

[9]     通讯作者. Research on tool stick-slip erosion wear mechanism in cutting nickel-based alloy GH4169. Tribology International 188 (2023) 108803. SCI1区)

[10] 第一作者. Theoretical Calculation and Analysis of Physical and Mechanical Properties of WC-Co Cemented Carbide with Lanthanum, Journal of Materials Engineering and Performance, Available online, 2023.05. (SCI4).

[11] 通讯作者. Cutting performance of the nanotwinned CBN tool in nano-cutting of Ni-Cr-Fe alloy. Journal of Manufacturing Processes 2023, 95: 521534. (SCI2)

[12] 通讯作者. Dynamic plastic evolution mechanism in cutting zone of nickel-based superalloy GH4169. Journal of Materials Processing Technology, 2023, 313: 117858. (SCI1)

[13] 第一作者. Effect of pulsed current on plastic deformation of Inconel 718 under high strain rate and high temperature conditions. Journal of Alloys and Compounds, 2023, 943: 169150. (SCI, 1)

[14] 通讯作者.  Research on Strengthening Mechanism of Rare Earth Cemented Carbide Tool Material. Journal of Engineering Materials and Technology - Transactions of the ASME, 2023, 145: 021006. (SCI, 4).

[15] 通讯作者. Research on surface roughness prediction in turning Inconel 718 based on Gaussian process regression. Physica Scripta, 2023, 98: 015216. (SCI, 4)

[16] 第一作者. Study on dynamic mechanical properties and constitutive model description of Inconel718. Proc I Mech E Part C:J Mechanical Engineering Science, 2022, Vol. 236(10) 5495–5509. (SCI4)

[17]  第一作者 Dynamic behavior description and three-dimensional cutting simulation of SiCp/Al composites with high volume fraction. Journal of Manufacturing Processes 77 (2022) 174–189. (SCI2)

[18]  第一作者. Cutting deformation mechanism of SiCp/Al composites based on strain gradient theory. Journal of Materials Processing Technology, 2022, 299: 117345. (SCI1)

[19] 通讯作者. Material dynamic behavior in cutting zone of Inconel 718 and its influence on cutting process. Archives of Civil and Mechanical Engineering 22, 146 (2022). (SCI2)

[20]  通讯作者. Study on the evolution mechanism of subsurface defects in nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. Journal of Manufacturing Processes 68 (2021) 14–33. (SCI 2)

[21] 第一作者. Diffusion mechanism in cutting Ni-based alloy containing γ' phase (Ni3Al) with CBN tool based on MD simulation, Part B: Journal of Engineering Manufacture, 2021, 235(6): 095440542110024. (SCI3)

[22] 第一作者. Effect of Workpiece Atom Diffusion into CBN Tool on its Mechanical Properties in Cutting Ni–Fe–Cr Alloy Based on Molecular Dynamics Simulation. International Journal of Precision Engineering and Manufacturing, 202122: 635–647. (SCI4区)

[23] 通讯作者Research on Deformation Mechanism of Cutting Nickel-Based Superalloy Inconel718 Based on Strain Gradient Theory, ASME-Journal of Manufacturing Science and Engineering, 2021, 143(10):1-16. SCI3区)

[24] [9] 通讯作者. Cutting mechanism of enhanced phase γ' in Inconel 718 based on strain gradient theory. International Journal of Advanced Manufacturing Technology, 2021, 113: 2523-2537SCI3区)

[25] 通讯作者. Study on staged work hardening mechanism of nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. Precision Engineering,2021, 68: 35-56.(SCI2)

[26] 第一作者. SiCp/2024Al复合材料高应变率热变形行为的新本构模型中国机械工程,2021, 06: 1346-1353.EI

[27] 第一作者.微切削镍基高温合金表面质量的研究制造技术与机床,2020, 0727-32.

[28]  通讯作者. Influence of anisotropy of nickel-based single crystal superalloy in atomic and close-to-atomic scale cutting. Precision Engineering, 2020, 66: 347-362. (SCI2)

[29]  第一作者. Work hardening mechanism based on molecular dynamics simulation in cutting Ni-Fe-Cr series of Ni-based alloy, Journal of Alloys and Compounds, 2020, 819.(SCI2top)

[30] 第一作者. Research on tool wear based on multi-scale simulation in high speed cutting Inconel718. Archives of Civil and Mechanical Engineering, 2018, 18(3): 928-940. (SCI2)

[31]  第一作者. Research of plastic behavior in high-speed cutting Inconel718 based on multi-scale simulation. International Journal of Advanced Manufacturing Technology, 2018, 94: 3731-3739. (SCI3)

[32] 第一作者. Surface residual stress in high speed cutting of superalloy Inconel718 based on multiscale simulation. Journal of Manufacturing Processes, 2018, 31: 480-493. (SCI2) 

五、毕业生去向

课题组硕士毕业生多人荣获校优秀硕士毕业论文、校优秀毕业生,获国家奖学金。多名毕业生在哈尔滨工业大学、大连理工大学、中科院深造,攻读博士学位;以及在广汽集团、 中国航发长春控制科技有限公司、阿尔派电子、恒普真空科技有限公司等企业工作。



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations

团队成员Research Group

团队名称:难加工材料高效精密切削加工

团队介绍:团队长期从事难加工材料高效精密切削加工技术与理论研究,研究工作能紧密联系生产实际,探索符合吉林省航空装备制造、维修特色产业体系的研究目标和方向,发挥团队优势,注重学科的融合与攻关解决实际问题,并把基础研究和推广应用紧密结合,科研成绩显著。